0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Thermal Fluctuations of Bio-Filaments With Elastic Rod Theory

[+] Author Affiliations
Sachin Goyal

University of California, Merced, CA

Paper No. DETC2013-13457, pp. V07AT10A013; 5 pages
doi:10.1115/DETC2013-13457
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5596-6
  • Copyright © 2013 by ASME

abstract

Bio-filaments at sub-micron scales such as DNA perform their biological functions via well-regulated structural deformations that involve large twisting and bending. The strain energies associated with these deformations are of the order of the thermal kinetic energies of surrounding solvent molecules. Therefore, the bio-filaments at such small length scales also exhibit large fluctuations in their shape due to the random collisions of the solvent molecules with them. These thermal fluctuations may, on one hand, help the bio-filaments explore functionally desirable configuration space, while, on the other hand, hinder the regulation of their deformations by motor proteins. Nevertheless, it seems indispensable to model the thermal fluctuations to accurately study the dynamics of deformation of bio-filaments. This paper presents the first elastic rod formulation that incorporates the thermal fluctuations by modeling the impacts of solvent molecules as distributed stochastic force. For quasi-static fluctuations, this formulation leverages the simplicity of a rod formulation noted by Anker et al. [1] that allows solving it as an initial value problem (IVP) in single iteration, and yet capturing arbitrarily large (nonlinear) deformations with rigorous description of constitutive laws.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In