Full Content is available to subscribers

Subscribe/Learn More  >

A Recursive Body-Body Formulation for Reducing the Computational Cost of Pairwise Coulomb Force Computation for Modeling and Simulation of Biopolymers, Using a Multibody Approach to Model Reduction

[+] Author Affiliations
Jeremy Laflin, Kurt Anderson

Rensselaer Polytechnic Institute, Troy, NY

Paper No. DETC2013-13339, pp. V07AT10A010; 6 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5596-6
  • Copyright © 2013 by ASME


This work presents a method for recursively assembling tensor-like quantities that parameterize the charge distribution of rigid bodies, which result from model reduction of biopolymeric systems using an articulated multibody approach. This is done with the goal of reducing the computational cost associated with the pairwise force determination encountered in molecular dynamics simulations. To achieve a linear computational cost complexity of the force determination, with respect to the number of bodies in the system (N), a recursive assembly and disassembly (evaluation) sweep is proposed. This work proposes assembling these tensor quantities (pseudo-inertia tensors), which are associated with the body’s charge distribution, with a method that uses the standard parallel axis theorem to shift these tensors to a common point so they may be summed.

This work presents a preliminary numerical example that examines the accuracy of the force and moment computation using a pseudo-inertia tensor resulting after one level of recursive assembly. The Coulomb force and associated moment on a target body due to the assembled body is computed. The test problem approximates a system that is highly negatively or positively charged. The orientation of the bodies that are assembled is varied, along with the distance between the assembly and the target body. The preliminary results presented herein suggest that this is a viable method of efficiently representing the charge distribution of an assembly. The numerical example presented determines the Coulomb force and the associated moment, as a function of distance and the pseudo-inertia tensor. However, the approximation can be used for any force that is of the form 1/rs, where s is any power.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In