0

Full Content is available to subscribers

Subscribe/Learn More  >

Bio-Inspired, Low-Cost, Self-Regulating Valves for Drip Irrigation in Developing Countries

[+] Author Affiliations
Pawel J. Zimoch, Eliott Tixier, A. E. Hosoi, Amos G. Winter, V

Massachusetts Institute of Technology, Cambridge, MA

Abhijit Joshi

Jain Irrigation Systems Ltd., Jalgaon, India

Paper No. DETC2013-12495, pp. V005T06A040; 7 pages
doi:10.1115/DETC2013-12495
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 25th International Conference on Design Theory and Methodology; ASME 2013 Power Transmission and Gearing Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5592-8
  • Copyright © 2013 by ASME

abstract

We use nonlinear behavior of thin-walled structures — an approach inspired by biological systems (the human airway, for example) — to address one of the most important problems facing subsistence farmers in developing countries: lack of access to inexpensive, water-efficient irrigation systems. An effective way of delivering water to crops is through a network of emitters, with up to 85% of the water delivered being absorbed by plants. However, of the 140 million hectares of cropped land in India alone, only 61 million are irrigated and just 5 million through drip irrigation. This is, in part, due to the relatively high cost of drip irrigation. The main cost comes from the requirement to pump the water at relatively high pressure (>1bar), to minimize the effect of uneven terrain and viscous losses in the network, and to ensure that each plant receives the same amount of water. Using a prototype, we demonstrate that the pressure required to drive the system can be reduced significantly by using thin-walled structures to design emitters with completely passive self-regulation that activates at approximately 0.1bar. This reduction in driving pressure could help bring the price of drip irrigation systems from several thousand dollars to approximately $300, which is within reach of small-scale farmers. Using order-of-magnitude calculations, we show that due to increased sensitivity of the proposed design to the applied pressure differential, a pressure compensating valve for drip irrigation could be built without using costly silicone membranes.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In