0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulating Stochastic Diffusions by Quantum Walks

[+] Author Affiliations
Yan Wang

Georgia Institute of Technology, Atlanta, GA

Paper No. DETC2013-12739, pp. V03BT03A053; 11 pages
doi:10.1115/DETC2013-12739
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3B: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5589-8
  • Copyright © 2013 by ASME

abstract

Stochastic differential equation (SDE) and Fokker-Planck equation (FPE) are two general approaches to describe the stochastic drift-diffusion processes. Solving SDEs relies on the Monte Carlo samplings of individual system trajectory, whereas FPEs describe the time evolution of overall distributions via path integral alike methods. The large state space and required small step size are the major challenges of computational efficiency in solving FPE numerically. In this paper, a generic continuous-time quantum walk formulation is developed to simulate stochastic diffusion processes. Stochastic diffusion in one-dimensional state space is modeled as the dynamics of an imaginary-time quantum system. The proposed quantum computational approach also drastically accelerates the path integrals with large step sizes. The new approach is compared with the traditional path integral method and the Monte Carlo trajectory sampling.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In