0

Full Content is available to subscribers

Subscribe/Learn More  >

Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals

[+] Author Affiliations
Zhonglai Wang, Zissimos P. Mourelatos, Jing Li

Oakland University, Rochester, MI

Amandeep Singh, Igor Baseski

U.S. Army, TARDEC, Warren, MI

Paper No. DETC2013-12257, pp. V03BT03A048; 17 pages
doi:10.1115/DETC2013-12257
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3B: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5589-8
  • Copyright © 2013 by ASME

abstract

Time-dependent reliability is the probability that a system will perform its intended function successfully for a specified time. Unless many and often unrealistic assumptions are made, the accuracy and efficiency of time-dependent reliability estimation are major issues which may limit its practicality. Monte Carlo simulation (MCS) is accurate and easy to use but it is computationally prohibitive for high dimensional, long duration, time-dependent (dynamic) systems with a low failure probability. This work addresses systems with random parameters excited by stochastic processes. Their response is calculated by time integrating a set of differential equations at discrete times. The limit state functions are therefore, explicit in time and depend on time-invariant random variables and time-dependent stochastic processes. We present an improved subset simulation with splitting approach by partitioning the original high dimensional random process into a series of correlated, short duration, low dimensional random processes. Subset simulation reduces the computational cost by introducing appropriate intermediate failure sub-domains to express the low failure probability as a product of larger conditional failure probabilities. Splitting is an efficient sampling method to estimate the conditional probabilities. The proposed subset simulation with splitting not only estimates the time-dependent probability of failure at a given time but also estimates the cumulative distribution function up to that time with approximately the same cost. A vibration example involving a vehicle on a stochastic road demonstrates the advantages of the proposed approach.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In