0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Robust Optimization Approach for Design Optimization With Interval Uncertainty Using Sequential Quadratic Programming

[+] Author Affiliations
Jianhua Zhou, Mian Li

University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China

Paper No. DETC2013-12235, pp. V03BT03A047; 13 pages
doi:10.1115/DETC2013-12235
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3B: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5589-8
  • Copyright © 2013 by ASME

abstract

Uncertainty is inevitable in real world. It has to be taken into consideration, especially in engineering optimization; otherwise the obtained optimal solution may become infeasible. Robust optimization (RO) approaches have been proposed to deal with this issue. Most existing RO algorithms use double-looped structures in which a large amount of computational efforts have been spent in the inner loop optimization to determine the robustness of candidate solutions. In this paper, an advanced approach is presented where no optimization run is required to be performed for robustness evaluations in the inner loop. Instead, a concept of Utopian point is proposed and the corresponding maximum variable/parameter variation will be obtained by just solving a set of linear equations. The obtained robust optimal solution from the new approach may be conservative, but the deviation from the true robust optimal solution is very small given the significant improvement in the computational efficiency. Six numerical and engineering examples are tested to show the applicability and efficiency of the proposed approach, whose solutions and computational time are compared with those from a similar but double-looped approach, SQP-RO, proposed previously.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In