0

Full Content is available to subscribers

Subscribe/Learn More  >

Comprehensive Product Platform Planning (CP3) for a Modular Family of Unmanned Aerial Vehicles

[+] Author Affiliations
Souma Chowdhury, Weiyang Tong, Achille Messac

Syracuse University, Syracuse, NY

Victor Maldonado

Texas Tech University, Lubbock, TX

Paper No. DETC2013-13181, pp. V03BT03A037; 15 pages
doi:10.1115/DETC2013-13181
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3B: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5589-8
  • Copyright © 2013 by ASME

abstract

The development of products with a modular structure, where the constituent modules could be derived from a set of common platforms to suit different market niches, provides unique engineering and economic advantages. However, the quantitative design of such modular product platforms could become significantly challenging for complex products. The Comprehensive Product Platform Planning (CP3) method facilitates effective design of such product platforms. The original CP3 method is however typically suitable for scale-based product family design. In this paper, we perform important modifications to the commonality matrix and the commonality constraint formulation in CP3 to advance its applicability to modular product family design. A commonality index (CI), defined in terms of the number of unique modules in a family, is used to quantify the commonality objective. The new CP3 method is applied to design a family of reconfigurable Unmanned Aerial Vehicles (UAVs) for civilian applications. CP3 enables the design of an optimum set of distinct modules, different groups of which could be assembled to configure twin-boom UAVs that provide three different combinations of payload capacity and endurance. The six key modules that participate in the platform planning are: (i) the fuselage/pod, (ii) the wing, (iii) the booms, (iv) the vertical tails, (v) the horizontal tail, and (vi) the fuel tank. The performance of each UAV is defined in terms of its range per unit fuel consumption. Among the best tradeoff UAV families obtained by mixed-discrete Particle Swarm Optimization, the family with the maximum commonality (CI = 0.5) required a 66% compromise of the UAVs’ range/fuel-consumption performance. The platform configuration corresponding to the maximum-commonality UAV family involved sharing of the horizontal tail and fuel tank among all three UAVs and sharing of the fuselage and booms among two UAVs.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In