0

Full Content is available to subscribers

Subscribe/Learn More  >

Using a Goal-Switching Selection Operator in Multi-Objective Genetic Algorithm Optimization Problems

[+] Author Affiliations
Daniel Shaefer, Scott Ferguson

North Carolina State University, Raleigh, NC

Paper No. DETC2013-13199, pp. V03BT03A033; 11 pages
doi:10.1115/DETC2013-13199
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3B: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5589-8
  • Copyright © 2013 by ASME

abstract

This paper demonstrates how solution quality for multiobjective optimization problems can be improved by altering the selection phase of a multiobjective genetic algorithm. Rather than the traditional roulette selection used in algorithms like NSGA-II, this paper adds a goal switching technique to the selection operator. Goal switching in this context represents the rotation of the selection operator among a problem’s various objective functions to increase search diversity. This rotation can be specified over a set period of generations, evaluations, CPU time, or other factors defined by the designer. This technique is tested using a set period of generations before switching occurs, with only one objective considered at a time. Two test cases are explored, the first as identified in the Congress on Evolutionary Computation (CEC) 2009 special session and the second a case study concerning the market-driven design of a MP3 player product line. These problems were chosen because the first test case’s Pareto frontier is continuous and concave while being relatively easy to find. The second Pareto frontier is more difficult to obtain and the problem’s design space is significantly more complex. Selection operators of roulette and roulette with goal switching were tested with 3 to 7 design variables for the CEC 09 problem, and 81 design variables for the MP3 player problem. Results show that goal switching improves the number of Pareto frontier points found and can also lead to improvements in hypervolume and/or mean time to convergence.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In