Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Objective Optimization of a Disc Brake System by Using SPEA2 and RBFN

[+] Author Affiliations
Kaveh Amouzgar, Asim Rashid, Niclas Stromberg

Jönköping University, Jönköping, Sweden

Paper No. DETC2013-12809, pp. V03BT03A029; 10 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3B: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5589-8
  • Copyright © 2013 by ASME


Many engineering design optimization problems involve multiple conflicting objectives, which today often are obtained by computational expensive finite element simulations. Evolutionary multi-objective optimization (EMO) methods based on surrogate modeling is one approach of solving this class of problems. In this paper, multi-objective optimization of a disc brake system to a heavy truck by using EMO and radial basis function networks (RBFN) is presented. Three conflicting objectives are considered. These are: 1) minimizing the maximum temperature of the disc brake, 2) maximizing the brake energy of the system and 3) minimizing the mass of the back plate of the brake pad. An iterative Latin hypercube sampling method is used to construct the design of experiments (DoE) for the design variables. Next, thermo-mechanical finite element analysis of the disc brake, including frictional heating between the pad and the disc, is performed in order to determine the values of the first two objectives for the DoE. Surrogate models for the maximum temperature and the brake energy are created using RBFN with polynomial biases. Different radial basis functions are compared using statistical errors and cross validation errors (PRESS) to evaluate the accuracy of the surrogate models and to select the most accurate radial basis function. The multi-objective optimization problem is then solved by employing EMO using the strength Pareto evolutionary algorithm (SPEA2). Finally, the Pareto fronts generated by the proposed methodology are presented and discussed.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In