Full Content is available to subscribers

Subscribe/Learn More  >

Descriptor-Based Methodology for Designing Heterogeneous Microstructural Materials System

[+] Author Affiliations
Hongyi Xu, Yang Li, Catherine Brinson, Wei Chen

Northwestern University, Evanston, IL

Paper No. DETC2013-12232, pp. V03AT03A049; 12 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3A: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5588-1
  • Copyright © 2013 by ASME


In designing a microstructural materials system, there are several key questions associated with design representation, design evaluation, and design synthesis: how to quantitatively represent the design space of a heterogeneous microstructure system using a small set of design variables, how to efficiently reconstruct statistically equivalent microstructures for design evaluation, and how to quickly search for the optimal microstructure design to achieve the desired material properties. This paper proposes a new descriptor-based methodology for designing microstructural materials systems. A descriptor-based characterization method is proposed to provide a quantitative representation of material morphology using a small set of microstructure descriptors covering features of material composition, dispersion status, and phase geometry at different levels of representation. A descriptor-based multi-phase microstructure reconstruction algorithm is developed which allows efficient stochastic reconstruction of microstructures for Finite Element Analysis (FEA) of material behavior. The choice of descriptors for polymer nanocomposites is verified by establishing a mapping between the finite set of descriptors and the infinite dimensional correlation function. Finally, the descriptor-based representation allows the use of parametric optimization approach to search the optimal microstructure design that meets the target material properties. To improve the search efficiency, this paper employs state-of-the-art computational design methods such as Design of Experiment (DOE), metamodeling, statistical sensitivity analysis, and multi-objective optimization. The proposed methodology is demonstrated using the design of a polymer nanocomposites system.

Copyright © 2013 by ASME
Topics: Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In