0

Full Content is available to subscribers

Subscribe/Learn More  >

Resilient Design of Complex Engineered Systems

[+] Author Affiliations
Hoda Mehrpouyan, Brandon Haley, Irem Y. Tumer, Chris Hoyle

Oregon State University, Corvallis, OR

Andy Dong

University of Sydney, Sydney, NSW, Australia

Paper No. DETC2013-13248, pp. V03AT03A048; 10 pages
doi:10.1115/DETC2013-13248
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3A: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5588-1
  • Copyright © 2013 by ASME

abstract

This paper presents a complex network and graph spectral approach to calculate the resiliency of complex engineered systems. Resiliency is a key driver in how systems are developed to operate in an unexpected operating environment, and how systems change and respond to the environments in which they operate. This paper deduces resiliency properties of complex engineered systems based on graph spectra calculated from their adjacency matrix representations, which describes the physical connections between components in a complex engineered systems. In conjunction with the adjacency matrix, the degree and Laplacian matrices also have eigenvalue and eigenspectrum properties that can be used to calculate the resiliency of the complex engineered system. One such property of the Laplacian matrix is the algebraic connectivity. The algebraic connectivity is defined as the second smallest eigenvalue of the Laplacian matrix and is proven to be directly related to the resiliency of a complex network. Our motivation in the present work is to calculate the algebraic connectivity and other graph spectra properties to predict the resiliency of the system under design.

Copyright © 2013 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In