Full Content is available to subscribers

Subscribe/Learn More  >

Probabilistic Design of Smart Sensing Functions for Structural Health Monitoring and Prognosis

[+] Author Affiliations
Abdulaziz T. Almaktoom, Zequn Wang, Pingfeng Wang

Wichita State University, Wichita, KS

Paper No. DETC2013-12598, pp. V03AT03A047; 9 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3A: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5588-1
  • Copyright © 2013 by ASME


Significant technological advances in sensing and communication promote the use of large sensor networks to monitor structural systems, identify damages, and quantify damage levels. Prognostics and health management (PHM) technique has been developed and applied for a variety of safety-critical engineering structures, given the critical needs of the structure health state awareness. The PHM performance highly relies on real-time sensory signals which convey the structural health relevant information. Designing an optimal structural sensor network (SN) with high detectability is thus of great importance to the PHM performance. This paper proposes a generic SN design framework using a detectability measure while accounting for uncertainties in material properties and geometric tolerances. Detectability is defined to quantify the performance of a given SN. Then, detectability analysis will be developed based on structural simulations and health state classification. Finally, the generic SN design framework can be formulated as a mixed integer nonlinear programming (MINLP) using the detectability measure and genetic algorithms (GAs) will be employed to solve the SN design optimization problem. A power transformer study will be used to demonstrate the feasibility of the proposed generic SN design methodology.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In