Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Robust Classification Fusion Platform for Structural Health Diagnostics

[+] Author Affiliations
Prasanna Tamilselvan, Pingfeng Wang

Wichita State University, Wichita, KS

Chao Hu

University of Maryland, College Park, MD

Paper No. DETC2013-12601, pp. V03AT03A037; 10 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3A: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5588-1
  • Copyright © 2013 by ASME


Efficient health diagnostics provides benefits such as improved safety, improved reliability, and reduced costs for the operation and maintenance of engineered systems. This paper presents a multi-attribute classification fusion approach which leverages the strengths provided by multiple membership classifiers to form a robust classification model for structural health diagnostics. Health diagnosis using the developed approach consists of three primary steps: (i) fusion formulation using a k-fold cross validation model; (ii) diagnostics with multiple multi-attribute classifiers as member algorithms; and (iii) classification fusion through a weighted majority voting with dominance system. State-of-the-art classification techniques from three broad categories (i.e., supervised learning, unsupervised learning, and statistical inference) were employed as the member algorithms. The proposed classification fusion approach is demonstrated with a bearing health diagnostics problem. Case study results indicated that the proposed approach outperforms any stand-alone member algorithm with better diagnostic accuracy and robustness.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In