Full Content is available to subscribers

Subscribe/Learn More  >

Predicting Consumer Choice Set Using Product Association Network and Data Analytics

[+] Author Affiliations
Mingxian Wang, Wei Chen

Northwestern University, Evanston, IL

Paper No. DETC2013-12425, pp. V03AT03A027; 11 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3A: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5588-1
  • Copyright © 2013 by ASME


Although discrete choice analysis has been shown to be useful for modeling consumer preferences and choice behaviors in the field of engineering design, information of choice set composition is often not available in majority of the collected consumer purchase data. When a large set of choice alternatives exist for a product, such as automotive vehicles, randomly choosing a small set of product alternatives to form a choice set for each individual consumer will result in misleading choice modeling results. In this work, we propose a data-analytics approach to mine existing data of choice sets and predict the choice set for each individual customer in a new choice modeling scenario where the choice set information is lacking. The proposed data-analytics approach integrates product association analysis, network analysis, consumer segmentation, and predictive analytics. Using the J.D. Power vehicle survey as the existing choice set data, we demonstrate that the association network approach is capable of recognizing and expressively summarizing meaningful product relations in choice sets. Our method accounts for consumer heterogeneity using the stochastic generation algorithm where the probability of selecting an alternative into a choice set integrates the information of customer profile clusters and products chosen frequencies. By comparing multiple multinomial logit models using different choice set compositions, we show that the choice model estimates are sensitive to the choice set compositions and our proposed method leads to improved modeling results. Our method also provides insights into market segmentation that can guide engineering design decisions.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In