0

Full Content is available to subscribers

Subscribe/Learn More  >

Wave Energy Extraction Maximization in Irregular Ocean Waves Using Pseudospectral Methods

[+] Author Affiliations
Daniel R. Herber, James T. Allison

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DETC2013-12600, pp. V03AT03A018; 11 pages
doi:10.1115/DETC2013-12600
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3A: 39th Design Automation Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5588-1
  • Copyright © 2013 by ASME

abstract

Energy extraction from ocean waves and conversion to electrical energy is a promising form of renewable energy, yet achieving economic viability of wave energy converters (WECs) has proven challenging. In this article, the design of a heaving cylinder WEC will be explored. The optimal plant (i.e. draft and radius) design space with respect to the design’s optimal control (i.e. power take-off trajectory) for maximum energy production is characterized. Irregular waves based on the Bretschneider wave spectrum are considered. The optimization problem was solved using a pseudospectral method, a direct optimal control approach that can incorporate practical design constraints, such as power flow, actuation force, and slamming. The results provide early-stage guidelines for WEC design. Results show the resonance frequency required for optimal energy production with a regular wave is quite different than the resonance frequency found for irregular waves; specifically, it is much higher.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In