0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Simulation for Design Verification of a Small Size Split Hopkinson Pressure Bar

[+] Author Affiliations
Mohamad Dyab, Payam Matin, Yuanwei Jin

University of Maryland Eastern Shore, Princess Anne, MD

Paper No. DETC2013-13716, pp. V02AT02A019; 10 pages
doi:10.1115/DETC2013-13716
From:
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 33rd Computers and Information in Engineering Conference
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5585-0
  • Copyright © 2013 by ASME

abstract

Split Hopkinson Pressure Bar is an apparatus that is used to study materials behavior under high speed deformation, where strain rate is very high. Hopkinson bars are usually custom made based on the needs of customers, who are mostly researchers in universities or research labs. In this work, the authors designed a small size split Hopkinson pressure bar. The objectives of this project are 1) to design a well-structured Hopkinson bar by means of solid mechanics fundamentals 2) to implement finite element simulation to verify the design. The designed Split Hopkinson bar consists of two metallic bars with a specimen placing in between, a striker assembly, an air compressor, instrumentation and a data acquisition system. The solid model of the apparatus is built using CAD software SolidWorks. The design is validated by extensive finite element simulation using ABAQUS. A working prototype is physically built and tested. High speed deformation experiments are developed using the prototype fabricated. The experiments are conducted as an impact is made by the striker on one of the bars, which generates stress wave through the specimen and the other bar. During the experiments, strain in specimen is determined by measuring strains on the bars using strain gauges mounted on the bars. Preliminary tests demonstrate that the performance of the apparatus is as predicted by the FEM simulation. This work is supported by an NSF’s CMMI (Civil, Mechanical and Manufacturing Innovation) program.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In