Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Polymer Micro Fibers: A Smoothed Particle Hydrodynamics Approach

[+] Author Affiliations
Nick Cramer, M. Teodorescu

UC Santa Cruz, Santa Cruz, CA

Paper No. DETC2013-12702, pp. V001T09A026; 8 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 15th International Conference on Advanced Vehicle Technologies; 10th International Conference on Design Education; 7th International Conference on Micro- and Nanosystems
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5584-3
  • Copyright © 2013 by ASME


The nanofibrillar array of a Gecko inspired Synthetic Adhesive (GSA) adheres to a surfaces when fibers undergo deformations of both the stems and the tip. The GSA’s show interesting changes in effectiveness dependent on use patterns, preloads, and material types, amongst other parameters. The polymers fibers also, display plastic creep even at relatively low strain rates and stresses below plastic yield. Therefore, a suitable numerical solution, which predicts the fiber geometry, must consider not only the initial shape of the fiber, but also the fiber progressive deformation (local and global) and the influence this has on the local mechanical properties (elastic, viscoelastic, strain hardening/softening and plastic flow). The localized mechanical properties are difficult to calculate using traditional methods because of the nonlinearities associated with viscoelastic effects, the large deformations, and the variable boundary conditions. However, the variable boundary conditions make a mesh free modeling method ideal. Smooth Particle Hydrodynamics (SPH) is one of the most prominent mesh free Lagrange method, which takes a set particle and uses particle kinematics, density gradients, and material properties to determine the interaction between particles.

As a first step towards modeling the behavior of a fibrillar adhesive surface, this paper focuses on the modeling of a single polymer fiber. The single micro fiber will be subjected to similar conditions to what it would see as part of an array. This will allow the SPH method of simulation to be critiqued for its further use in simulating polymer microfiber. While the localized mechanical properties of the polymer, which depend on viscoelastic effect and other nonlinear phenomena, are difficult to determine analytically. The modeling technique can be compared to standard analytical methods for global parameters. It was found that the SPH method was able to appropriately model the effect of various scenarios on the mechanical deformation and resonance of a polymer microfiber. Further more the friction force for the fiber on glass was calculated as were the localized fiber velocities and stresses.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In