Full Content is available to subscribers

Subscribe/Learn More  >

Antenna-Like Tactile Sensor for Thin-Film Piezoelectric Micro-Robots

[+] Author Affiliations
Ryan Rudy, Jeffrey S. Pulskamp, Ronald G. Polcawich

U.S. Army Research Laboratory, Adelphi, MD

Adam J. Cohen, Kenn R. Oldham

University of Michigan, Ann Arbor, MI

Paper No. DETC2013-13500, pp. V001T09A023; 7 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 15th International Conference on Advanced Vehicle Technologies; 10th International Conference on Design Education; 7th International Conference on Micro- and Nanosystems
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5584-3
  • Copyright © 2013 by ASME


Terrestrial and other millimeter-scale autonomous micro-robots face significant challenges in surveying their environment, due to small power budgets and payload capacities. One low-power, low-mass form of obstacle detection is tactile sensing of contact with other surfaces. In this-paper, a tactile sensor inspired by insect antennae is described, based on thin-film lead-zirconate-titanate (PZT) transduction. Thin-film piezoelectric materials permit actuation and sensing mechanisms to be coupled in very small, compact structures, as well as complement previously developed microrobotic leg mechanisms. Key design parameters for the tactile sensor are introduced and analyzed in terms of sweep frequency and range of motion, and signals from sensor impact are predicted. Experimental results with partially-released prototype actuators show respectable agreement with modeled behavior for dynamic motion, though impact detection is hampered by large feedthrough disturbances. Completed sensors range from 2 to 4 mm in length and are approximately 500 μm in width, with a sweep range of nearly 1 mm demonstrated from a 2 mm long prototype.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In