Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication and Testing of Planar Stent Mesh Designs Using Carbon Infiltrated Carbon Nanotubes

[+] Author Affiliations
Kristopher Jones, Brian D. Jensen, Anton Bowden

Brigham Young University, Provo, UT

Paper No. DETC2013-13297, pp. V001T09A005; 7 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 15th International Conference on Advanced Vehicle Technologies; 10th International Conference on Design Education; 7th International Conference on Micro- and Nanosystems
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5584-3
  • Copyright © 2013 by ASME


This paper explores and demonstrates the potential of using pyrolitic carbon as a material for coronary stents. Stents are commonly fabricated from metal, which has worse biocompatibilty than many polymers and ceramics. Pyrolitic carbon, a ceramic, is currently used in medical implant devices due to its preferrable biocompatibility properties. It can be created by growing carbon nanotubes, and then filling the space between with amorpheous carbon via chemical vapor deposition. We prepared multiple samples of two different stent-like flexible geometry designs out of carbon infiltrated carbon nanotubes. Tension loads were applied to expand the samples and we recorded the forces at brittle failure. These data were then used in conjunction with a nonlinear FEA model of the stent geometry to determine Youngs modulus and maximum fracture strain for each sample. Additionally, images were recorded of the samples before, during, and at failure. These images were used to measure an overall percent elongation for each sample. The highest fracture strain observed was 1.4% and Youngs modulus values confirmed the the material was the similar to that used in previous carbon infiltrated carbon nanotube work. The average percent elongation was 86% and reached as high as 145%. This exceeds a typical target of 66%.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In