Full Content is available to subscribers

Subscribe/Learn More  >

Digital Representation of Physical Artifacts: The Effect of Low Cost, High Accuracy 3D Scanning Technologies on Engineering Education, Student Learning and Design Evaluation

[+] Author Affiliations
Nitish Vasudevan, Conrad S. Tucker

The Pennsylvania State University, University Park, PA

Paper No. DETC2013-12651, pp. V001T04A013; 10 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 15th International Conference on Advanced Vehicle Technologies; 10th International Conference on Design Education; 7th International Conference on Micro- and Nanosystems
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5584-3
  • Copyright © 2013 by ASME


This paper aims to address two fundamental challenges in engineering education; i) the disconnect between digital and tactile learning activities in traditional Engineering Design curricula and ii) variations in standards used to assess digital activities completed by students.

Digital 3D scanning technologies have the potential to mitigate the disconnect between digital and tactile learning activities by providing students with a real time understanding of the relationship between the digital and tactile design space in a real time, dynamic manner. In the process, students are introduced to the concept of reverse engineering as a means of understanding product assembly/disassembly as tactile activities, which can be then seamlessly represented/augmented in the digital space. The researchers of this work aim to understand the impact on the learning outcomes experienced by students when digital and tactile engineering activities are integrated in a real time dynamic manner.

To mitigate variations in standards used to assess digital activities completed by students, the authors propose employing a 3D similarity metric that quantifies the differences between digital solutions created by students and a baseline solution from which student solutions are compared against. By establishing a quantitative similarity metric to assess student solutions, variations in grading across different instructors can be minimized and scores finalized in a more timely and efficient manner.

The case study presented in this work is based on an Introduction to Engineering Design course, where freshmen students working both in individual and team based design projects are introduced to both digital and tactile activities. The research findings reveal students’ perception of 3D scanning technologies as it relates to their experiences with digital and tactile learning activities. After being introduced to digital and tactile activities, students’ performance are quantified through controlled design activities that are then assessed/graded using the proposed digital similarity metric.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In