Full Content is available to subscribers

Subscribe/Learn More  >

A Cogging Torque Assisted Motor Driven Valve Actuation System for Internal Combustion Engines

[+] Author Affiliations
Bradley A. Reinholz, Rudolf J. Seethaler

University of British Columbia, Kelowna, BC, Canada

Paper No. DETC2013-13182, pp. V001T01A029; 8 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 15th International Conference on Advanced Vehicle Technologies; 10th International Conference on Design Education; 7th International Conference on Micro- and Nanosystems
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5584-3
  • Copyright © 2013 by ASME


Electromechanical valve actuation (EVA) for internal combustion engines promises to significantly improve engine efficiency and lower emissions by reducing pumping losses and allowing for novel combustion strategies. However, current designs have not been able to meet the stringent performance criteria for reliability, efficiency, acoustic emissions, weight, and cost that are required by the automotive industry. This paper describes a novel cogging torque assisted motor driven (CTAMD) valve actuation system that promises to meet both the performance and robustness requirements. In contrary to existing EVA systems that recover the kinetic valve energy using a mechanical spring system, the CTAMD system recovers kinetic energy in a magnetic field. This allows for high efficiency while maintaining a simple and elegant electromechanical design. This paper describes the characteristics of CTAMD systems and outlines an electromechanical design for such a system. Then computer simulations of the proposed design are used to demonstrate the expected performance of the system. Finally, the simulated results are compared to other EVA systems to highlight the anticipated improvements.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In