Full Content is available to subscribers

Subscribe/Learn More  >

The Development of a Longitudinal Control System for a Sports-Utility-Vehicle

[+] Author Affiliations
Herman Hamersma, Schalk Els

University of Pretoria, Pretoria, South Africa

Paper No. DETC2013-12048, pp. V001T01A024; 8 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 15th International Conference on Advanced Vehicle Technologies; 10th International Conference on Design Education; 7th International Conference on Micro- and Nanosystems
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5584-3
  • Copyright © 2013 by ASME


A common problem with sports-utility-vehicles is the low rollover threshold, due to a high center of gravity. Instead of modifying the vehicle to increase the rollover threshold, the aim of the control system is to prevent the vehicle from exceeding speeds that would cause the vehicle to reach its rollover threshold. The aim of the autonomous longitudinal control system, discussed here, is to improve the vehicle’s safety by controlling the vehicle’s longitudinal behavior.

In order to develop a control system that autonomously controls the longitudinal degree of freedom, an experimentally validated mathematical model of the test vehicle (a 1997 Land Rover Defender 110 Wagon) was used — the model was developed in MSC.ADAMS/View. The control system was developed by generating a reference speed that the vehicle must track. This reference speed was formulated by taking into account the vehicle’s limits due to lateral acceleration, combined lateral and longitudinal acceleration and the vehicle’s performance capabilities.

The MSC.ADAMS/View model of the test vehicle was used to evaluate the performance of the control system on various racetracks for which the GPS coordinates were available. The simulation results indicate that the control system performed as expected by limiting the vehicle’s acceleration vector to the prescribed limits.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In