Full Content is available to subscribers

Subscribe/Learn More  >

Interaction Forces Between the Rider and the 2-Wheeled Vehicle and Biomechanical Models

[+] Author Affiliations
Marco Bevilacqua, Alberto Doria, Mauro Tognazzo

University of Padova, Padova, Italy

Paper No. DETC2013-12084, pp. V001T01A020; 10 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 15th International Conference on Advanced Vehicle Technologies; 10th International Conference on Design Education; 7th International Conference on Micro- and Nanosystems
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5584-3
  • Copyright © 2013 by ASME


In two-wheeled vehicles the mass of the rider is a significant part of the total mass of the system and the rider influences the dynamic behavior both by means of the voluntary control actions and by means of the passive response of his body to the oscillations of the vehicle. The passive response of the rider’s body has a particular influence on roll motion, which is typical of two-wheeled vehicles. Roll oscillations generate inertia forces on the rider’s body, which moves with respect to the vehicle. Forces and torques generated by the rider on the handlebars, saddle and foot rests are different from the ones that would be generated if the body was rigidly fixed to the vehicle. Therefore, advanced simulation of two wheeled vehicles requires passive biomechanical models of the rider. This paper proposes a novel approach for the study of the passive response of the rider’s body that is based on measurements in the laboratory of the interaction forces between the rider and the vehicle. A special motorcycle mock-up is developed, it is driven by a hydraulic shaker that generates roll excitation with variable frequency. A system of load cells measures the lateral force and torque between the rider and the motorcycle mock-up. The study is carried out in the frequency domain, the passive response of rider’s body is represented by means of three frequency response functions (FRFs): lateral force FRF and torque FRF are the ratios between the lateral force/torque and the roll input; motion FRF is the ratio between the roll motion of the rider’s trunk and the roll input. The biomechanical models of the rider’s body that are developed in this work are able to simulate its response both in terms of interaction forces and motion. These models are composed by some rigid bodies with lumped stiffness and damping parameters in the articulations and in this way they represent a good compromise between accuracy and complexity. The biomechanical parameters of the models are identified by means of a genetic algorithm that aims to minimize a penalty function based on the difference between the three FRFs predicted by the model and the measured FRFs. Results show that a 5 degree of freedom model of the rider is able to represent the measured behavior both in terms of interaction forces and trunk motion.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In