Full Content is available to subscribers

Subscribe/Learn More  >

An Investigation of the Ward Leonard System for Use in a Hybrid or Electric Passenger Vehicle

[+] Author Affiliations
Cody L. Telford

Polaris Industries, Inc., Wyoming, MN

Robert H. Todd

Brigham Young University, Provo, UT

Paper No. DETC2013-12051, pp. V001T01A001; 9 pages
  • ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 15th International Conference on Advanced Vehicle Technologies; 10th International Conference on Design Education; 7th International Conference on Micro- and Nanosystems
  • Portland, Oregon, USA, August 4–7, 2013
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5584-3
  • Copyright © 2013 by ASME


Since the early 1900’s demand for fuel efficient vehicles has motivated the development of electric and hybrid electric vehicles. Unfortunately, some components used in these vehicles are expensive and complex. Todays consumer electric vehicles use dangerously high voltage, expensive electronic controllers, complex battery management systems and AC motors. The goal of this research at BYU is to increase safety by lowering the operating voltage and decrease cost by eliminating expensive controllers and decrease the number of battery cells.

This paper specifically examines the use of a Ward Leonard Motor Control system for use in a passenger vehicle. The Ward Leonard System provides an alternative control method to expensive and complex systems used today.

A Control Factor metric was developed as a result of this research to measure the Ward Leonard System’s ability to reduce the size and cost of the electronic controller for application in an EV or HEV. A bench top model of the Ward Leonard system was tested validating the Control Factor metric. The Ward Leonard system is capable of reducing the controller size by 77% and potentially reducing its cost by this amount or more. This work also provides performance characteristics for automotive designers and offers several design alternatives for EV and HEV architectures allowing a reduction in voltage, the use of AC inverters, AC motors, expensive controllers and high cell count battery packs.

Copyright © 2013 by ASME
Topics: Vehicles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In