0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of SUBSPACE-Based Hybrid Monte Carlo-Deterministic Algorithms for Reactor Physics Calculations

[+] Author Affiliations
Qiong Zhang, Hany Abdel-Khalik

North Carolina State University, Raleigh, NC

Paper No. ICONE21-16784, pp. V006T16A056; 7 pages
doi:10.1115/ICONE21-16784
From:
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 6: Beyond Design Basis Events; Student Paper Competition
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5583-6
  • Copyright © 2013 by ASME

abstract

This paper presents an innovative hybrid Monte-Carlo-Deterministic method denoted by the SUBSPACE method designed for improving the efficiency of hybrid methods for reactor analysis applications. The SUBSPACE method achieves its high computational efficiency by taking advantage of the existing correlations between desired responses. Recently, significant gains in computational efficiency have been demonstrated using this method for source driven problems. Within this work the mathematical theory behind the SUBSPACE method is introduced and the performance is demonstrated based on a fixed-source problem. Furthermore, the SUBSPACE method has been successfully extended to address core wide level k-eigenvalue problems. The method’s efficiency is demonstrated based on a three-dimensional quarter-core problem, where responses are sought on the pin cell level. The SUBSPACE method is compared to the FW-CADIS method and is found to be more efficient for the utilized test problem because of the reason that the FW-CADIS (Forward Weighted Consistent Adjoint Driven Importance Sampling) method solves a forward eigenvalue problem and an adjoint fixed-source problem while the SUBSPACE method only solves an adjoint fixed-source problem. Based on the favorable results obtained here, we are confident that the applicability of Monte Carlo for large scale reactor analysis could be realized in the near future.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In