Full Content is available to subscribers

Subscribe/Learn More  >

Analysis and Applications of a Two-Fluid Multi-Field Hydrodynamic Model for Churn-Turbulent Flows

[+] Author Affiliations
Gustavo Montoya, Yixiang Liao, Dirk Lucas, Eckhard Krepper

Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

Paper No. ICONE21-16297, pp. V006T16A033; 13 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 6: Beyond Design Basis Events; Student Paper Competition
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5583-6
  • Copyright © 2013 by ASME


Today Computational Fluid Dynamic (CFD) codes are widely used for industrial applications, mostly in the case of single phase flows in automotive or aircraft engineering, but multiphase flow modeling had gain an increasing importance in the last years. Safety analyses on nuclear power plants require reliable prediction on steam-water flows in case of different accident scenarios. This is particularly true for passive safety systems such as the GEKO component of the KERENA reactor. Here flashing may occur in the riser (Leyer and Wich, 2012). In such case, high gas volume fractions and the churn-turbulent flow regime may ensue. In the past, the codes for the prediction of churn-regime have not shown a very promising behavior. In this paper, a two-fluid multi-field hydrodynamic model has been developed based in the Euler-Euler framework. The main emphasis of this work has been on the modeling and applicability of various interfacial forces between dispersed gaseous phases and the continuous liquid, as well as bubble-bubble interactions, and the evolution of different bubble sizes in an adiabatic vertical pipe inside the churn-turbulent flow regime. All the expected mechanistic models that intervene in this flow pattern have been taken into account including drag force, wall force, lift force, turbulent dispersion, and bubble induced turbulence. Bubble breakup and coalescence has been defined (Liao et al., 2011), and in order to design a polydispersed model related to reality, the inhomogeneous MUSIG approach (Krepper et al., 2008) has been used to defined an adequate number of bubble size fractions which are arranged into different groups with their own velocity field. Based on these models, a series of simulations were made on the framework of ANSYS CFX 14.0, and all of the calculations were further validated with experimental data extracted from the TOPFLOW facility at the Helmholtz-Zentrum Dresden-Rossendorf. Different water and gas flow rates were used inside the churn-turbulent flow regime, as well as for the transition from bubbly to churn flow. The calculated cross-section averaged bubble size distributions, gas velocities, and time averaged radial profile for the gas fraction have shown a promising agreement with the experimental data. Nevertheless there are also clear deviations which indicate shortcomings of the present modelling. In order to further improve the modeling of this flow regime, a discussion based on the results will be used to shown a series of limitations of the actual modeling and possible solutions to be implemented in future works.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In