Full Content is available to subscribers

Subscribe/Learn More  >

Experiment and Numerical Analysis of Control Method of Natural Circulation by Injection of Helium Gas

[+] Author Affiliations
Naoto Yanagawa, Masashi Nomura, Tetsuaki Takeda, Shumpei Funatani

University of Yamanashi, Kofu, Yamanashi, Japan

Paper No. ICONE21-16072, pp. V006T16A026; 6 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 6: Beyond Design Basis Events; Student Paper Competition
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5583-6
  • Copyright © 2013 by ASME


This study is to investigate a control method of the natural circulation of the air by the injection of helium gas. A depressurization is the one of the design-basis accidents of a Very High Temperature Reactor (VHTR). When the primary pipe rupture accident occurs in the VHTR, the air is predicted to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Finally, it seems to be probable that the natural circulation flow of the air in the reactor pressure vessel produce continuously. In order to predict or analyze the air ingress phenomenon during the depressurization accident of the VHTR, it is important to develop the method for prevention of air ingress during the accident. In this study, the air ingress process is discussed by comparing the experimental and analytical results of the reverse U-shaped channel which has parallel channels.

The experiment of the natural circulation using a circular tube consisted of the reverse U-shaped type has been carried out. The vertical channel is consisted of the one side heated and the other side cooled pipe. The experimental apparatus is filled with the air and one side vertical tube is heated. A very small amount of helium gas is injected from the top of the channel. The velocity and the mole fraction of each gas are also calculated by using heat and mass transfer numerical analysis of multi-component gas.

The result shows that the numerical analysis is considered to be well simulated the experiment. The natural circulation of the air has very weak velocity after the injection of helium gas. About 780 seconds later, the natural circulation suddenly produces. The natural circulation flow of the air can be controlled by the method of helium gas injection. The mechanism of the phenomenon is found that mole fraction is changed by the molecular diffusion and the very weak circulation.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In