0

Full Content is available to subscribers

Subscribe/Learn More  >

Towards Optimal In-Core Fuel Management of Thorium-Plutonium-Fuelled PWR Cores

[+] Author Affiliations
Nurjuanis Z. Zainuddin, Benjamin A. Lindley, Geoffrey T. Parks

University of Cambridge, Cambridge, UK

Paper No. ICONE21-15246, pp. V006T16A005; 10 pages
doi:10.1115/ICONE21-15246
From:
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 6: Beyond Design Basis Events; Student Paper Competition
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5583-6
  • Copyright © 2013 by ASME

abstract

Plutonium is a significant proliferation concern as well as a major contributor to the long-term toxicity of nuclear waste. Partial incineration in PWRs with uranium-MOX fuel is often considered to mitigate these concerns. Thorium-MOX is an alternative fuel with superior material properties and higher plutonium destruction rates, as shown in multiple feasibility studies. However, the core performance and operational characteristics (e.g. discharge burn-up, feasibility of controlling the core) are ultimately dependent on the core loading pattern (LP) and burnable poison (BP) design. In this paper, the LP for Th-Pu fuel of various compositions is optimized for (1) discharge burn-up, (2) radial form factor (RFF), (3) cycle length, (4) moderator temperature coefficient (MTC), and (5) reactivity swing over cycle. Maximizing the cycle length makes the discharge burn-up and reactivity swing worse due to placement of once- and twice-burnt fuel near the core periphery. It also makes the MTC less negative. The harder neutron spectrum of Th-Pu fuel compared to conventional U fuel favours the use of distributed integral burnable poisons to control the reactivity swing over the cycle. This leads to a significant amount of dissimilarity between LPs with relatively similar performance measures, and between optimal LPs for different Pu loadings in the fuel. The RFF can vary throughout the cycle but a careful placement of the assemblies can mitigate this. The cycle reactivity swing is controlled using enriched soluble boron, which makes the MTC worse, and this constrains feasibility for high Pu loading in the fuel.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In