0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Numerical Simulation for Jet Breakup Behavior in Complicated Structure of BWR Lower Plenum: 1 — Preliminary Analysis of Jet Breakup Behavior in Complicated Structure by TPFIT

[+] Author Affiliations
Takayuki Suzuki, Hiroyuki Yoshida, Fumihisa Nagase

Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

Yutaka Abe, Akiko Kaneko

University of Tsukuba, Tsukuba, Ibaraki, Japan

Paper No. ICONE21-15744, pp. V006T15A012; 6 pages
doi:10.1115/ICONE21-15744
From:
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 6: Beyond Design Basis Events; Student Paper Competition
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5583-6
  • Copyright © 2013 by ASME

abstract

In order to improve the safety of Boiling Water Reactor (BWR), it is required to know the behavior of the plant when an accident occurred as can be seen at Fukushima Daiichi nuclear power plant accident. Especially, it is important to estimate the behavior of molten core jet in the lower part of the containment vessel at severe accident.

In the BWR lower plenum, the flow characteristics of molten core jet are affected by many complicated structures, such as control rod guide tubes, instrument guide tubes and core support plate. However, it is difficult to evaluate these effects on molten core jet experimentally. Therefore, we considered that multi-phase computational fluid dynamics approach is the best way to estimate the effects on molten core jet by complicated structure.

The objective of this study is to develop the evaluation method for the flow characteristic of molten core jet including the effects of the complicated structures in the lower plenum. So we are developing a simulation method to estimate the behavior of molten core jet falling down through the core support plate to the lower plenum of the BWR. The method has been developed based on interface tracking method code TPFIT (Two Phase Flow simulation code with Interface Tracking). To verify and validate the applicability of the developed method in detail, it is necessary to obtain the experimental data that can be compared with detailed numerical results by the TPFIT. Thus, in this study, we are carrying out experimental works by use of multi-phase flow visualization technique. In the experiments, time series of interface shapes are observed by high speed camera and velocity profiles in/out of the jet will be measured by the PIV method.

In this paper, the outline of the developing method based on the TPFIT was explained. And, the developing method was applied to preliminary experiment with/without modeled complicated structures. As the results, predicted interface shapes were almost agreed with measured data. However, predicted falling down velocity of the jet was lower than measured data. We considered causes of this underestimation and improved the method and simulation conditions to resolve this problem.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In