0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Supercritical Water Heat Transfer in the Vertically Heated Tube

[+] Author Affiliations
Feng Wang, Bo Cui, Xue Qin

Chongqing University, Chongqing, China

Shijun Zhang

China Nuclear Power Engineering Co., Ltd., Shenzhen, Guangdong, China

Paper No. ICONE21-16158, pp. V003T10A035; 5 pages
doi:10.1115/ICONE21-16158
From:
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 3: Nuclear Safety and Security; Codes, Standards, Licensing and Regulatory Issues; Computational Fluid Dynamics and Coupled Codes
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5580-5
  • Copyright © 2013 by ASME

abstract

The heat transfer of water in a vertically heated tube at 24.52 MPa is numerically simulated by computational fluid dynamics software of FLUENT. The IAPWS-IF97 formulation is applied to obtain the water properties, which vary substantially at supercritical condition. The two-dimensional axi-symmetric model using RNG k-ε turbulence model with enhanced wall treatment gives fine prediction of wall temperature and heat transfer coefficient. The mesh size near the wall adapted smaller when at high heat fluxes for the accuracy of computed results. The wall heat fluxes were set to be 233, 698, 930 and 1100 kW/m2 to match the simulation with experiment performed by Yamagata. It is found that k-ε turbulence model with enhanced wall treatment can give outstanding prediction of heat transfer enhancement and heat transfer deterioration. The heat transfer coefficient value reaches a maximum near the pseudocritical point and it decreases with increase of heat flux.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In