Full Content is available to subscribers

Subscribe/Learn More  >

Study of Mixing Characteristics Over a Spacer Grid With Sloping Channels Based on Numerical Simulations in a PWR 5×5 Rod Bundle Using CFD Codes

[+] Author Affiliations
Xi Chen, Hong Zhang

Nuclear Power Institute of China, Chengdu, China

Paper No. ICONE21-15795, pp. V003T10A027; 6 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 3: Nuclear Safety and Security; Codes, Standards, Licensing and Regulatory Issues; Computational Fluid Dynamics and Coupled Codes
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5580-5
  • Copyright © 2013 by ASME


Spacer grids are important components of fuel assemblies for Pressurized Water Reactors (PWR). The presence of spacer grid promotes local heat transfer adjacent to the rod wall downstream by inducing swirl and cross flows within and between sub-channels to increase thermal hydraulic safety margin. Recent years, Computational Fluid Dynamics (CFD) methodologies are widely adopted to designs of spacer grids. This paper presents results of numerical simulations with commercial code CFX 12.0 in a PWR 5 × 5 rod bundle including a spacer grid with sloping channels. Based on a combined mesh generation approach of structured and unstructured mesh, distributions of velocity fields, temperature and pressure fields downstream the spacer grid were analyzed. The results indicate that cross flows caused by the spacer grid are uniform in circumference inducing no thermal hydraulic deterioration, but mass exchange between central hot fluid and external cold fluid appears insufficient for the new style grid.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In