Full Content is available to subscribers

Subscribe/Learn More  >

Development of PCCSAP-3D Code for Passive Containment: Models of Noncondensable Gases, Aerosols and Fission Products

[+] Author Affiliations
Ran Li

East China Institute of Technology, Beijing, China

Jiyang Yu

Tsinghua University, Beijing, China

Paper No. ICONE21-15606, pp. V003T10A021; 8 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 3: Nuclear Safety and Security; Codes, Standards, Licensing and Regulatory Issues; Computational Fluid Dynamics and Coupled Codes
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5580-5
  • Copyright © 2013 by ASME


PCCSAC-3D is a code originally developed for AC600 containment thermo-hydraulic analysis. Its validated capabilities include simulating the behaviors of steam-air mixture and liquid water under the unique conditions of an AC600/AP1000 containment after a DBA. The film-tracking model applied gives it the ability to simulate the liquid film both outside and inside the steel containment. Refined with some new models, the new version of the code, named PCCSAP-3D, can cover hydrogen behavior, fission products behavior (in the form of gas and aerosol) and iodine behavior.

In the module of noncondensable gas, diffusion of up to 11 species are taken into consideration. A user-definable recombiner/ignitor model is developed to accommodate different types of hydrogen recombiners and ignitors.

Given the source term as a boundary condition, the fission products model would be able to track up to 64 radio-isotopes after a LOCA. The leakage and spontaneous decay is accounted for all of these nuclides. Besides, the noble gases, gaseous iodine and fission product aerosols are treated separately. There is no removal mechanism of noble gases. Whereas removal mechanisms of radio-aerosols considered include spray, gravitational sedimentation, diffusio-phoresis and thermo-phoresis. A simple model for gaseous iodine comprises organic iodine and elemental iodine, in which the effects of spray and liquid adsorption are treated integrally.

To evaluate the radioactivity consequences of a certain accident, a radioactivity calculation model is brought out to convert the molar concentration or mass concentration of radioactive material into radioactivity concentration.

The new version of PCCSAP-3D code with models aforementioned is preliminarily validated by comparing the simulation results with safety analysis results reported in AP1000 Design Control Document. The accident scenario is set as a design basic LOCA with core melt.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In