Full Content is available to subscribers

Subscribe/Learn More  >

Fast Reactor Design Using the Advanced Reactor Modeling Interface

[+] Author Affiliations
Jesse Cheatham, Bao Truong, Nicholas Touran, Ryan Latta, Robert Petroski

TerraPower, LLC, Bellevue, WA

Mark Reed

Massachusetts Institute of Technology, Cambridge, MA

Paper No. ICONE21-16815, pp. V002T05A072; 6 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 2: Plant Systems, Construction, Structures and Components; Next Generation Reactors and Advanced Reactors
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5579-9
  • Copyright © 2013 by ASME


The Advanced Reactor Modeling Interface (ARMI) code system has been developed at TerraPower to enable rapid and robust core design. ARMI is a modular modeling framework that loosely couples nuclear reactor simulations to provide high-fidelity system analysis in a highly automated fashion. Using a unified description of the reactor as input, a wide variety of independent modules run sequentially within ARMI. Some directly calculate results, while others write inputs for external simulation tools, execute them, and then process the results and update the state of the ARMI model. By using a standardized framework, a single design change, such as the modification of the fuel pin diameter, is seamlessly translated to every module involved in the full analysis; bypassing error-prone multi-analyst, multi-code approaches. Incorporating global flux and depletion solvers, subchannel thermal-hydraulics codes, pin-level power and flux reconstruction methods, detailed fuel cycle and history tracking systems, finite element-based fuel performance coupling, reactivity coefficient generation, SASSYS-1/SAS4A transient modeling, control rod worth routines, and multi-objective optimization engines, ARMI allows “one click” steady-state and transient assessments throughout the reactor lifetime by a single user. This capability allows a user to work on the full-system design iterations required for reactor performance optimizations that has traditionally required the close attention of a multi-disciplinary team. Through the ARMI framework, a single user can quickly explore a design concept and then consult the multi-disciplinary team for model validation and design improvements. This system is in full production use for reactor design at TerraPower, and some of its capabilities are demonstrated in this paper by looking at how design perturbations in fast reactor core assemblies affect steady-state performance at equilibrium as well as transient performance. Additionally, the pin-power profile is examined in the high flux gradient portion of the core to show the impact of the perturbations on pin peaking factors.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In