Full Content is available to subscribers

Subscribe/Learn More  >

CFD Investigation of Heat Transfer Deterioration in Supercritical Water Flowing Through Vertical Annular Channels

[+] Author Affiliations
U. S. Tejaswini, Dipankar N. Basu, Manmohan Pandey

Indian Institute of Technology Guwahati, Guwahati, AS, India

Paper No. ICONE21-16720, pp. V002T05A069; 7 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 2: Plant Systems, Construction, Structures and Components; Next Generation Reactors and Advanced Reactors
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5579-9
  • Copyright © 2013 by ASME


In order to enhance the efficiency of current light water reactors, the generation IV initiative has included the supercritical water reactor (SCWR) as one of the future designs. The rapid change in density in the vicinity of the pseudo-critical temperature leads to strong buoyancy effect at low flow rates and flow acceleration at high flow rates, both of which significantly influence heat transfer characteristics. Experimental investigation of such phenomena being very cumbersome and cost-intensive, numerical simulation using CFD tools is considered to be a useful option for providing better understanding of the heat transfer mechanisms in geometries and conditions typical of SCWR. The present work involves numerical analysis of the heat transfer deterioration (HTD) phenomenon in turbulent flow of supercritical water through a vertical annular channel. ANSYS-CFX 14.0 software was employed for the same. An annular fluid domain, with a heated inner wall and an insulated outer wall, was modeled and the flow was considered to be in the upward and downward directions. Grid independence study was conducted with structured mesh. The results were compared with those reported in the published literature. It is known that the HTD phenomenon causes a sudden rise in the wall temperature, and hence it is necessary to predict the effect of changes in operating and design parameters. Parametric study was done by varying pressure, inlet temperature, heat flux and mass flux. Annuli of different hydraulic diameters were also considered.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In