Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Thermal-Hydraulic Analyses for Designing an Experimental Model of a Molten Salt Reactor Concept

[+] Author Affiliations
Bogdán Yamaji, Attila Aszódi

Budapest University of Technology and Economics, Budapest, Hungary

Paper No. ICONE21-16592, pp. V002T05A062; 10 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 2: Plant Systems, Construction, Structures and Components; Next Generation Reactors and Advanced Reactors
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5579-9
  • Copyright © 2013 by ASME


Based on the MSFR (Molten Salt Fast Reactor) reactor concept presented within the framework of the EVOL (Evaluation and Viability of Liquid Fuel Fast Reactor System, EU FP7) international research project preliminary three-dimensional thermal-hydraulic analyses and the discussion of scaled experimental modelling will be presented.

The MSFR concept is a single region, homogeneous liquid fuelled fast reactor. The reactor concept uses fluoride-based molten salts with fissile uranium and/or thorium and other heavy nuclei content with the purpose of applying the thorium cycle and the burn-up of transuranic elements. The concept has a single region cylindrical core with sixteen radial inlet and outlet nozzles located at the bottom and top of the core. The external circuit (internal heat exchanger, pump, pipes) is broken up into sixteen identical modules distributed around the core.

Purpose of the three-dimensional computational fluid dynamics (CFD) calculations is to study the possibility of experimental investigation of the fluid flow in the core of the proposed MSFR concept using a scaled model and Particle Image Velocimetry (PIV) flow measurement technique.

First the main properties of the proposed MSFR concept are introduced, and the information on other experimental thermal-hydraulic modelling of different reactors, including MSRE (Molten Salt Reactor Experiment) are summarised.

With a scaled plexiglas MSFR model it would be possible to carry out flow field measurements under laboratory conditions using PIV method. Possible way of scaling are presented and a series of preliminary CFD calculations are discussed. Possibilities and limitations of such scaling and segmenting of a model and the use of water as substitute fluid for the experimental mock-up will be discussed.

Objectives of such a measurement series would be validation, benchmarking of CFD calculations and codes, application of CFD modelling experience in the detailed thermal-hydraulic design of the MSFR concept, possible measurements for the study of specific problems or phenomena, for example refinement of inlet geometry, effects of internal structures, coolant mixing.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In