Full Content is available to subscribers

Subscribe/Learn More  >

A Study on the Influences of Reactivity Feedback Mechanisms in China Experimental Fast Reactor Unprotected Transients

[+] Author Affiliations
Yuanyu Wu, Hong Yu, Lixia Ren, Wenjun Hu, Hongtao Qian

China Institute of Atomic Energy, Beijing, China

Paper No. ICONE21-16114, pp. V002T05A037; 5 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 2: Plant Systems, Construction, Structures and Components; Next Generation Reactors and Advanced Reactors
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5579-9
  • Copyright © 2013 by ASME


Inherent safety properties of reactor have always played an important role in severe accidents preventing and consequences mitigation. With proper design, reactivity feedback mechanisms can bring benign reactivity feedbacks to the reactor core during unprotected transients, thus contributing to the severe accidents mitigation. In overpower transients, the increasing power causes the fuel temperature to increase, which directly brings fuel Doppler feedback and core axial expansion feedback. In unprotected loss-of-flow accidents, as the flow rate decreases, the mismatch of power and flow causes the increase of coolant temperature, thus directly resulting in the coolant reactivity, core radial expansion as well as the control rod driveline expansion feedbacks. Through the simulation of China Experimental Fast Reactor (CEFR) unprotected transients, the influences of different reactivity feedback mechanisms have been investigated and analyzed. The coolant reactivity exhibits significant negative feedback and makes the dominant contribution in controlling the reactivity in both UTOP and ULOF transients.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In