Full Content is available to subscribers

Subscribe/Learn More  >

Optimization Design for Air Heat Exchanger of Large Fast Reactor Based on Genetic Algorithm

[+] Author Affiliations
Huajin Yu, Lina Zhu, Zhenxing Zhang, Ziyu Liao

China Institute of Atomic Energy, Beijing, China

Paper No. ICONE21-15848, pp. V002T05A024; 5 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 2: Plant Systems, Construction, Structures and Components; Next Generation Reactors and Advanced Reactors
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5579-9
  • Copyright © 2013 by ASME


The passive design for decay heat removal system of future fast reactor will put forward higher requirement for air heat exchanger (AHX), which is directly relevant to the structure and anti-seismic design of stack. Under considering the heat exchanger ability and the structure compactness comprehensively, a strategy for the optimization design of AHX based on genetic algorithm was developed in this paper. The air resistance in shell side of vertical fin tube AHX was chosen as the objective function, and the effect of design parameters including fin pitch, number of tube rows, tube pitch and tube length on the air resistance was discussed. The results of the study show that the method for the optimization design of AHX based on genetic algorithm can effectively optimize the structure of AHX and improve the resistance characteristic of the shell side evidently, which leads to design the fast reactor plant, stack structure and seismic resistance simply.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In