Full Content is available to subscribers

Subscribe/Learn More  >

Research of the Effects on a Nuclear Cable Material Irradiated by Beta/Gamma Irradiation

[+] Author Affiliations
Weixia Zhong, Jiansheng Sun

Shanghai Electric Cable Research Institute, Shanghai, China

Jinping Liu, Ping Sun

Shanghai Special Cable Electrotechnical Co., Ltd., Shanghai, China

Paper No. ICONE21-16198, pp. V002T03A042; 9 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 2: Plant Systems, Construction, Structures and Components; Next Generation Reactors and Advanced Reactors
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5579-9
  • Copyright © 2013 by ASME


In this paper, irradiated samples by different irradiation doses of the beta/gamma radiation from a selected nuclear cable material, which were studied by tensile machine, DSC and DMTA. The research results show that the elongation at break (EAB) drops with absorbed dose of beta/gamma radiation and at the same dose the EAB drop for beta-irradiated samples is higher than that for gamma-irradiated samples, which means that this material becomes more brittler with more irradiation. The OITP value for the irradiated samples exhibits pronounced drop with absorbed beta/gamma irradiation dose. And moreover, the OITP value of these gamma irradiated samples drops faster than that of those beta irradiated samples. DMTA researches show that the storage modulus (E′) and the loss factor (tanδ = E″/E′, E″ represents the loss modulus) of the irradiated samples present higher values with the increase dose of beta /gamma radiation. It is interest that the E′ behaves firstly an increase, then decreases by rising the temperature within the temperature range of −30–20 °C, and this trend becomes pronounced with increase of irradiation dose, combined with the activation energy, correspond to the glass transition process, for all the irradiated samples which hints that the glass transition process may be hindered in terms of a higher activation energy, but the movement unit could be smaller with a lower Tg, as a result of the beta/gamma irradiation.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In