Full Content is available to subscribers

Subscribe/Learn More  >

A Three-Dimensional Rigid-Body Model for Seismic Analysis of the Pebble-Bed HTR Graphite Core Structure

[+] Author Affiliations
Chuan Zeng, Haitao Wang

Tsinghua University, Beijing, China

Paper No. ICONE21-15896, pp. V002T03A035; 9 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 2: Plant Systems, Construction, Structures and Components; Next Generation Reactors and Advanced Reactors
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5579-9
  • Copyright © 2013 by ASME


Graphite plays an important role in the pebble-bed high temperature gas-cooled reactors (HTR) as moderator, reflector as well as internal structural material. The HTR core consists of a large number of graphite bricks interconnected with keys. It is required that the structural integrity of the HTR core be maintained when subjected to the seismic load. Hence it is important from the viewpoint of seismic design to investigate the seismic responses of the graphite bricks. Considering the pebble-bed HTR has various graphite shapes, a generalized three-dimensional model with the associated computer code is developed to treat these interconnected graphite bricks with arbitrary shapes. In this model, each brick is treated as a rigid body with six degrees-of-freedom: three translational displacements and three rotations around the brick center of gravity. A nonlinear spring dashpot model is applied to present the collision between adjacent bricks and the interaction forces through the key systems. In the numerical tests, the code is verified by comparing predicted responses with exact solutions for two cases and good agreement is observed. The model is then used for the dynamic analysis of the side reflectors of the pebble-bed HTR core under a given seismic load. The calculated response behaviour of the side reflector column is summarized and discussed.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In