0

Full Content is available to subscribers

Subscribe/Learn More  >

The Development of Radiation-Resistant RF Tags for Use at Nuclear Power Plants

[+] Author Affiliations
Nobuyuki Teraura

Terrara Code Research Institute, Tokai, Aichi, Japan

Kunio Ito

Japan NUS, Tokyo, Japan

Naoki Takahashi

Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

Kouichi Sakurai

Kyushu University, Fukuoka, Fukuoka, Japan

Paper No. ICONE21-16605, pp. V001T01A043; 8 pages
doi:10.1115/ICONE21-16605
From:
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5578-2
  • Copyright © 2013 by ASME

abstract

RF tags based on RFID (Radio-frequency Identification) technology have been widely used in various fields including power plant construction and maintenance for the purpose of improving the identification and traceability of the many components in the facility. To date, various types of tags have been developed, including tags that are resistant to chemicals or high-temperature environments, which are used in specialized fields. When considering widespread use of RF tags in nuclear power plants, there is a concern about the effects of radiation on the RF tags, because the data stored in the tag may receive radiation damage, resulting in corruption of data. Here, we describe a newly designed RF tag that achieves resistance to radiation damage by attaching a radiation shield layer and incorporating automatic data-correction software. This radiation-resistant RF tag has been tested under real radiation exposure fields to verify the intended radiation-resistant functions. It is expected that the use of these radiation-resistant RF tags with a data reader and database system will increase the capabilities of RF tags applied to nuclear power plants and it is also expected to lead to reductions in worker radiation exposure doses.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In