Full Content is available to subscribers

Subscribe/Learn More  >

Elastin in the Arterial ECM: Interactions With Collagen and the Mechanical Properties After Elastin Degradation

[+] Author Affiliations
Ming-Jay Chow, Katherine Yanhang Zhang

Boston University, Boston, MA

Raphaël Turcotte

Boston University, Boston, MAMassachusetts General Hospital, Harvard Medical School, Boston, MA

Paper No. SBC2013-14257, pp. V01BT65A002; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5561-4
  • Copyright © 2013 by ASME


Elastin and collagen are the main structural components in the extracellular matrix (ECM) that contribute to the anisotropic and hyperelastic passive mechanical behavior of elastic arteries. It is commonly accepted that the elastin fibers support most of the load at the onset of stretching while collagen fiber recruitment and the transition to collagen bearing the load occurs at higher pressures [1]. Various diseases lead to changes in the ECM, for example in aortic aneurysm there is reduced elastin, excess aged collagen, and fragmentation of the elastic lamellae [2]. Likewise hypertension has been shown to increase arterial collagen and wall thickness with increased stiffness [3]. Improving our knowledge of how the ECM structure affects the mechanical behavior of arteries can provide insights to disease progression and better treatment methods.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In