0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Analysis of Fixed Medial Malleolar Fractures

[+] Author Affiliations
Ruchi D. Chande, John R. Owen, Robert S. Adelaar, Jennifer S. Wayne

Virginia Commonwealth University, Richmond, VA

Paper No. SBC2013-14632, pp. V01BT61A010; 2 pages
doi:10.1115/SBC2013-14632
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5561-4
  • Copyright © 2013 by ASME

abstract

The ankle joint, comprised of the distal ends of the tibia and fibula as well as talus, is key in permitting movement of the foot and restricting excessive motion during weight-bearing activities. Medial ankle injury occurs as a result of pronation-abduction or pronation-external rotation loading scenarios in which avulsion of the medial malleolus or rupture of the deltoid ligament can result if the force is sufficient [1]. If left untreated, the joint may experience more severe conditions like osteoarthritis [2]. To avoid such consequences, medial ankle injuries — specifically bony injuries — are treated with open reduction and internal fixation via the use of plates, screws, wires, or some combination thereof [1, 3–4]. In this investigation, the mechanical performance of two such devices was compared by creating a 3-dimensional model of an earlier cadaveric study [5], validating the model against the cadaveric data via finite element analysis (FEA), and comparing regions of high stress to regions of experimental failure.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In