0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Anisotropic Permeability of the Superficial Layer on the Frictional Property in Articular Cartilage

[+] Author Affiliations
Kyuichiro Imade

Tokyo Metropolitan University, Tokyo, Japan

Hiromichi Fujie

Tokyo Metropolitan University, Tokyo, JapanKogakuin University, Tokyo, Japan

Paper No. SBC2013-14396, pp. V01BT61A003; 2 pages
doi:10.1115/SBC2013-14396
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5561-4
  • Copyright © 2013 by ASME

abstract

Articular cartilage has a significant lubrication property that has been explained in previous studies by many theories including mixed lubrication, hydrodynamic lubrication, surface gel hydration lubrication, biphasic theory, and so on. However the mechanism of continuously low friction in articular cartilage still remains unclear. Reynaud and Quinn indicated that the hydraulic permeability was significantly anisotropic under compressive strain; the tangential permeability becomes lower than the normal permeability under compression [1]. Meanwhile scanning electron microscopic observation indicated that the superficial layer of articular surface was consisted of close-packed collagen fibers aligning parallel with articular surface and tangling each other in normal cartilage (Fig. 1). It is, therefore, suggested that the permeability is extremely low in the tangential direction when subjected to compressive strain. We have a hypothesis that the unique structure and properties in the articular cartilage superficial layer may improve the lubrication properties [2]. Therefore, we performed an analytical study using a fiber-reinforced poroelastic biphasic model to determine the effect of lateral permeability reduction in the superficial layer on the frictional property of articular cartilage.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In