0

Full Content is available to subscribers

Subscribe/Learn More  >

Relationship Between Meniscal Sample Swelling and the Compressive Properties of Bovine Menisci

[+] Author Affiliations
Stephen H. J. Andrews, Nigel G. Shrive, Janet L. Ronsky

University of Calgary, Calgary, AB, Canada

Paper No. SBC2013-14355, pp. V01BT55A015; 2 pages
doi:10.1115/SBC2013-14355
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5561-4
  • Copyright © 2013 by ASME

abstract

The menisci are anisotropic hydrated connective tissues, situated in the tibiofemoral joint. The menisci transmit approximately 50% of the load across this joint [1, 2]. In this tissue, compression would only be experienced in the axial (vertical) direction, and as such, many studies have tested samples in the axial direction to determine the compressive properties [3–5]. The material behaviour of the menisci has been described as biphasic, meaning the response of the tissue to applied load is time dependent and determined by both the solid constituents and their interaction with the fluid component [3]. Due to the low permeability of the tissue, deformation results in relative movement of the solid matrix and the fluid it contains, resulting in the creation of drag forces between the two phases. Fluid exudation from the matrix governs the viscoelastic behaviour of the tissue, including stress relaxation and creep [6]. The swelling behaviour of meniscal samples in varying osmotic environments was evaluated in our lab (unpublished data), where they swelled significantly, approximately 30% volumetrically in iso-osmotic phosphate buffered saline (PBS). It was hypothesized that the material properties of the tissue would be affected by this significant swelling. To date, no study has evaluated the effect of sample swelling, due to sample preparation and storage, on the behaviour of the menisci in compression. Therefore, the purpose of this study was to evaluate this relationship. We hypothesized that meniscal samples would be less stiff and more permeable in a swollen state than when they are compressed to the ‘fresh’, non-swollen, thickness prior to initiation of the protocol.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In