Full Content is available to subscribers

Subscribe/Learn More  >

In Vitro Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

[+] Author Affiliations
Snehal S. Shetye, Kevin L. Troyer, Christian M. Puttlitz

Colorado State University, Fort Collins, CO

Femke Streijger, Jae Lee, Brian K. Kwon, Peter Cripton

University of British Columbia, Vancouver, BC, Canada

Paper No. SBC2013-14775, pp. V01BT54A005; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5561-4
  • Copyright © 2013 by ASME


Approximately 12,400 new cases of spinal cord injuries (SCI) are reported in the United States every year. It has been estimated that the annual financial burden of SCI in the United States is approximately $7.736 billion. The mechanisms of mechanical damage to the spinal cord can be broadly classified into distraction, dislocation or contusion. Distraction injuries are predominantly caused by rapid acceleration-deceleration of the cervical spine. Vertebral burst fractures commonly result in contusion of the spinal cord and relative dislocation of adjacent vertebrae can inter-segmentally shear the spinal cord resulting in injury. Multiple studies have examined the quasi-static mechanical properties of the spinal cord [1–3]. However, considering that most spinal cord injuries occur during dynamic events with relatively high strain rates (ex: 10/s), alarmingly few studies have investigated the time-dependent mechanical characteristics of the spinal cord.

Copyright © 2013 by ASME
Topics: Spinal cord



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In