0

Full Content is available to subscribers

Subscribe/Learn More  >

Detailed Cadaveric Simulation of Landing Reveals Timing Sequence of Multi-Planar Knee Kinematics: Implications for ACL Injury

[+] Author Affiliations
A. M. Kiapour, V. K. Goel, C. K. Demetropoulos

University of Toledo, Toledo, OH

C. E. Quatman, S. C. Wordeman, T. E. Hewett

The Ohio State University, Columbus, OH

Paper No. SBC2013-14329, pp. V01BT32A005; 2 pages
doi:10.1115/SBC2013-14329
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5561-4
  • Copyright © 2013 by ASME

abstract

Over 120,000 anterior cruciate ligament (ACL) injuries occur annually in the United States, mainly affecting the young athletic population. Non-contact injuries are reported to be the predominant mechanism of ACL injury (>70% of ACL injuries), which often occur during landing with high ground reaction forces, muscle forces and segmental inertia. An improved understanding of the mechanisms underlying non-contact ACL injury and inciting events can be used to improve current prevention strategies and decrease the risk of early-onset osteoarthritis. Previous biomechanical and video analysis studies have demonstrated that anterior tibial translation (ATT), knee valgus and internal tibial rotation (ITR) are associated with non-contact ACL injuries [1–3]. While the effects of these factors on ACL injury risk have been extensively studied, there is still controversy and debate about the timing in which these motions occur and reach maximum values during a jump landing task. The current study aimed to investigate interactions between tibio-femoral joint kinematics and ACL strain through a detailed cadaveric simulation of the knee biomechanical response during landing from a jump. For this purpose, instrumented cadaveric limbs were used to simulate bi-pedal landing following a jump utilizing a novel testing apparatus.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In