Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Simulation of Muscle Loading During ARED Squat Exercise on the International Space Station

[+] Author Affiliations
Christopher D. Fregly, Brandon T. Kim

Eastside High School, Gainesville, FL

John K. De Witt

Wyle Science, Technology, & Engineering Group, NASA Exercise Physiology and Countermeasures Lab, Houston, TX

Benjamin J. Fregly

University of Florida, Gainesville, FL

Paper No. SBC2013-14792, pp. V01AT20A031; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Loss of muscle mass due to reduced mechanical loading is a critical issue for long duration spaceflight on the International Space Station (ISS) [1]. To address this issue, NASA has developed the Advanced Resistive Exercise Device (ARED) that allows astronauts to perform resistance exercise on the ISS. To minimize force transmission to the ISS, the ARED is mounted to a vibration isolation system (VIS). During squat exercise, ARED rotates relative to the ISS, functioning like a nutcracker to compress the astronaut with a load provided by two vacuum cylinders. Though the ARED is an effective exercise countermeasure device, the extent to which squat exercise on the ISS achieves Earth-equivalent muscle moments remains unknown.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In