Full Content is available to subscribers

Subscribe/Learn More  >

High Performance Microfluidic-Based DNA Isolation Chip

[+] Author Affiliations
Jeff Darabi

Southern Illinois University, Edwardsville, IL

Paper No. SBC2013-14522, pp. V01AT20A022; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Magnetic separation is one of the effective ways to separate specific biological entities such as DNA/RNA, bacteria, and cells from their native environment for subsequent downstream analysis. The process involves the labeling of the desired biological entity with magnetic beads followed by separating the tagged entities via a magnetic separation device. In conventional tube-based magnetic separation, magnetically labeled biological entities are retained on the inner wall of the tube by applying an external magnet, while the supernatant is decanted off. Removing the tube from the magnetic field enables resuspension of the target entity. Although widely used, there are limitations to the conventional magnetic separation method. For example, there is a significant sample loss due to multiple sample handling, washing, and transfer. In addition, manual magnetic separation systems are labor intensive and their effectiveness is user-dependent.

Copyright © 2013 by ASME
Topics: Microfluidics , DNA



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In