0

Full Content is available to subscribers

Subscribe/Learn More  >

GPU-Based Algorithm for Fast Computation of Cartilage Contact Patterns During Simulations of Movement

[+] Author Affiliations
Kwang Won Choi, Dan Negrut, Darryl G. Thelen

University of Wisconsin-Madison, Madison, WI

Paper No. SBC2013-14095, pp. V01AT20A007; 2 pages
doi:10.1115/SBC2013-14095
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

Direct measurement of cartilage contact is not feasible, necessitating the use of musculoskeletal models to estimate the internal soft tissue loading associated with movement2. However, current computational models used to simulate movement often utilize simplified joint kinematic constraints which can only provide an estimate of the net joint reaction force1. Detailed finite element models of the knee have been created14 which can provide estimates of cartilage tissue stress, but are too computationally expensive to solve within the context of a whole body simulation of movement. Discrete element analysis (DEA) provides a viable alternative for rapidly computing contact stress patterns in movement15, However, even DEA models can be computationally expensive as high resolution polygonal meshes are needed to accurately represent complex cartilage geometries such as that seen on the femoral condyles and tibia plateau. In a DEA model, much of the computation time is spent querying for contact between triangles of two polygonal surfaces. The objective of this study was to investigate the potential for using graphic processor computation (GPU) to expedite contact detection5. To do this, we use a contact detection algorithm that pre-constructs hierarchical bounding-volumes (BVH) of the target body to increase the efficiency of contact detection. We then show that implementing a parallel computational version of this algorithm on the GPU greatly speed up performance and thus make it more viable to simulate cartilage contact within the context of human movement.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In