Full Content is available to subscribers

Subscribe/Learn More  >

Cost Optimization of a Multilayer Microchannel Dialyzer

[+] Author Affiliations
Mahshid Mohammadi, Kendra V. Sharp

Oregon State University, Corvallis, OR

Paper No. SBC2013-14046, pp. V01AT20A002; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


A microchannel-based hemodialyzer offers a novel approach to hemodialysis practice and holds many promises to improve kidney patients’ life quality and dialysis treatment efficiency. The hallow fiber hemodialyzer, a conventional dialysis device, has certain limitations including non-uniformity of the dialysate flow path which necessitates the use of a high dialysate flow rate. The microchannel-based hemodialyzer with flat membranes remarkably improves the mass transfer characteristics and enables the design of a smaller and less expensive unit with lower dialysate-to-blood flow rate ratios [1, 2]. In the microchannel-based design, successive stacked layers alternate between blood flow and dialysate flow. A porous membrane between these layers allows for the transport of toxins from blood side to dialysis fluid side. A schematic view of a single layer is shown in Fig. 1.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In